
Introduction Classes and Objects Inheritance Polymorphism

Object-Oriented Approaches to Programming
e CLOS: Common Lisp Object System E

Didier Verna

didier@didierverna.net

didierverna.net @didierverna didier.verna in/didierverna

Copyright © 2025 Didier Verna, CC BY-NC-ND 4.0 Build 2025-05-21 19:20:50+02:00

mailto:didier@didierverna.net
http://didierverna.net
http://www.twitter.com/didierverna
http://www.facebook.com/didier.verna
http://www.linkedin.com/in/didierverna
https://creativecommons.org/licenses/by-nc-nd/4.0/

Introduction Classes and Objects Inheritance Polymorphism

Outline

Introduction

Classes and Objects
Classes and Objects
Information Scope and Accessibility
Type / Class Integration

Inheritance
Reminder
Inheritance Model
Problems Related to Inheritance

Polymorphism
Reminder
Generic Functions and Methods
(Sub-)Class / (Sub-)Type Relationship

OAP / CLOS: Common Lisp Object System 2/40

Copyright © 2025 Didier Verna, CC BY-NC-ND 4.0 Build 2025-05-21 19:20:50+02:00

https://creativecommons.org/licenses/by-nc-nd/4.0/

Introduction Classes and Objects Inheritance Polymorphism

Plan

Introduction

Classes and Objects
Classes and Objects
Information Scope and Accessibility
Type / Class Integration

Inheritance
Reminder
Inheritance Model
Problems Related to Inheritance

Polymorphism
Reminder
Generic Functions and Methods
(Sub-)Class / (Sub-)Type Relationship

OAP / CLOS: Common Lisp Object System 3/40

Copyright © 2025 Didier Verna, CC BY-NC-ND 4.0 Build 2025-05-21 19:20:50+02:00

https://creativecommons.org/licenses/by-nc-nd/4.0/

Introduction Classes and Objects Inheritance Polymorphism

Origins

I Experimentation since the 70’s
I Smalltalk, original ideas, etc.

I 1986: ACM Lisp and Functional Programming Conference
I Informal group for standardizing an object system

Strong pressure for standardizing the whole language
I X3J13 committee for Common Lisp standardization

I ANSI standard X3.226:1994 (R1999)
I Result: a “best-of” from ideas / systems of that time

I [New] Flavors (Symbolics Inc., MIT Lisp Machines), Dave Moon & Sonya Keene
I [Portable] Common Loops (Xerox PARC, Interlisp-D), Daniel Bobrow & Gregor Kiczales
I Lucid, Dick Gabriel & Linda DeMichiel

OAP / CLOS: Common Lisp Object System 4/40

Copyright © 2025 Didier Verna, CC BY-NC-ND 4.0 Build 2025-05-21 19:20:50+02:00

https://creativecommons.org/licenses/by-nc-nd/4.0/

Introduction Classes and Objects Inheritance Polymorphism

Characteristics I
I Stratified, flexible

I API (syntactic) =⇒ API (fonctional) =⇒ Implementation
I Generic functions (6= message passing)

I Message passing ill-suited to n-ary operations
I Multi-methods
I Natural extension to classical functions

I Multiple inheritance
I Linearized class precedence system

I Method combinations
I Multiple / simple invocation
I Several standard ones, programmable

OAP / CLOS: Common Lisp Object System 5/40

Copyright © 2025 Didier Verna, CC BY-NC-ND 4.0 Build 2025-05-21 19:20:50+02:00

https://creativecommons.org/licenses/by-nc-nd/4.0/

Introduction Classes and Objects Inheritance Polymorphism

Characteristics II
I Higher order (MOP)

I Meta-objects: generic functions, classes, etc.
I 1st class: anonymous manipulation, etc.

I Dynamic typing
I It’s Lisp !

I No encapsulation or protection mechanism
I Orthogonal to object-oriented programming
I Cf. accessors and packages

OAP / CLOS: Common Lisp Object System 6/40

Copyright © 2025 Didier Verna, CC BY-NC-ND 4.0 Build 2025-05-21 19:20:50+02:00

https://creativecommons.org/licenses/by-nc-nd/4.0/

Introduction Classes and Objects Inheritance Polymorphism

Plan

Introduction

Classes and Objects
Classes and Objects
Information Scope and Accessibility
Type / Class Integration

Inheritance
Reminder
Inheritance Model
Problems Related to Inheritance

Polymorphism
Reminder
Generic Functions and Methods
(Sub-)Class / (Sub-)Type Relationship

OAP / CLOS: Common Lisp Object System 7/40

Copyright © 2025 Didier Verna, CC BY-NC-ND 4.0 Build 2025-05-21 19:20:50+02:00

https://creativecommons.org/licenses/by-nc-nd/4.0/

Introduction Classes and Objects Inheritance Polymorphism

Plan

Introduction

Classes and Objects
Classes and Objects
Information Scope and Accessibility
Type / Class Integration

Inheritance
Reminder
Inheritance Model
Problems Related to Inheritance

Polymorphism
Reminder
Generic Functions and Methods
(Sub-)Class / (Sub-)Type Relationship

OAP / CLOS: Common Lisp Object System 8/40

Copyright © 2025 Didier Verna, CC BY-NC-ND 4.0 Build 2025-05-21 19:20:50+02:00

https://creativecommons.org/licenses/by-nc-nd/4.0/

Introduction Classes and Objects Inheritance Polymorphism

Classes

The human class
(defclass human () (name size birth-year))

I Remarks
I Functional definition (defclass is a macro)
I Dynamic life cycle (both a type and an object)
I Dynamic typing
I No member method (cf. generic functions)
I No protection mechanism
I No abstract / final classes, etc.

OAP / CLOS: Common Lisp Object System 9/40

Copyright © 2025 Didier Verna, CC BY-NC-ND 4.0 Build 2025-05-21 19:20:50+02:00

https://creativecommons.org/licenses/by-nc-nd/4.0/

Introduction Classes and Objects Inheritance Polymorphism

Instantiation: Allocation

General mechanism
(make-instance 'human)

I Remarks
I Function instantiation (6= constructor)
I Function common to all classes
I Reminder: garbage-collector =⇒ no destructor

I Problem: slot initialization

OAP / CLOS: Common Lisp Object System 10/40

Copyright © 2025 Didier Verna, CC BY-NC-ND 4.0 Build 2025-05-21 19:20:50+02:00

https://creativecommons.org/licenses/by-nc-nd/4.0/

Introduction Classes and Objects Inheritance Polymorphism

Instantiation: Initialization I

Initialization arguments
(defclass human ()

((name :initarg :name)
(size :initarg :size)
(birth-year :initarg :birth-year)))

(make-instance 'human
:name "Alain Térieur" :size 1.80 :birth-year 1970)

I Problem: initialization by default

OAP / CLOS: Common Lisp Object System 11/40

Copyright © 2025 Didier Verna, CC BY-NC-ND 4.0 Build 2025-05-21 19:20:50+02:00

https://creativecommons.org/licenses/by-nc-nd/4.0/

Introduction Classes and Objects Inheritance Polymorphism

Instantiation: Initialization II

Initialization values
(defclass human ()

((name :initarg :name)
(size :initarg :size)
(birth-year :initarg :birth-year :initform 1970)))

(make-instance 'human :name "Alain Térieur" :size 1.80)

I Problem: mandatory initialization

OAP / CLOS: Common Lisp Object System 12/40

Copyright © 2025 Didier Verna, CC BY-NC-ND 4.0 Build 2025-05-21 19:20:50+02:00

https://creativecommons.org/licenses/by-nc-nd/4.0/

Introduction Classes and Objects Inheritance Polymorphism

Instantiation: Initialization III

Instantiation function
(defun make-human (name size &rest keys &key birth-year)

(apply #'make-instance 'human :name name :size size
keys))

;; (make-human "Alain Térieur" 1.80)
;; (make-human "Alex Térieur" 1.80 :birth-year 1939)

I Remarks
I make-<class> is conventional
I Prefer keywords over optional parameters
I Call semantics 6= Overloading

OAP / CLOS: Common Lisp Object System 13/40

Copyright © 2025 Didier Verna, CC BY-NC-ND 4.0 Build 2025-05-21 19:20:50+02:00

https://creativecommons.org/licenses/by-nc-nd/4.0/

Introduction Classes and Objects Inheritance Polymorphism

Plan

Introduction

Classes and Objects
Classes and Objects
Information Scope and Accessibility
Type / Class Integration

Inheritance
Reminder
Inheritance Model
Problems Related to Inheritance

Polymorphism
Reminder
Generic Functions and Methods
(Sub-)Class / (Sub-)Type Relationship

OAP / CLOS: Common Lisp Object System 14/40

Copyright © 2025 Didier Verna, CC BY-NC-ND 4.0 Build 2025-05-21 19:20:50+02:00

https://creativecommons.org/licenses/by-nc-nd/4.0/

Introduction Classes and Objects Inheritance Polymorphism

Information Scope

Local vs. shared slots
(defclass human ()

((population :allocation :class :initform 0)
(name :initarg :name)
(size :initarg :size)
(birth-year :initarg :birth-year :initform 1970))

I Remarks
I By default: :allocation :instance
I No standard access to shared slots through classes
I No direct equivalent to class (static) methods

OAP / CLOS: Common Lisp Object System 15/40

Copyright © 2025 Didier Verna, CC BY-NC-ND 4.0 Build 2025-05-21 19:20:50+02:00

https://creativecommons.org/licenses/by-nc-nd/4.0/

Introduction Classes and Objects Inheritance Polymorphism

Information Accessibility I

General mechanism
(slot-value alain 'birth-year)

I Remarks
I Functional access (6= syntactic)
I Function common to all classes
I No protection mechanism (little sense)

Not even packages, no friendship concept, etc.
I Problem: lack of abstraction

OAP / CLOS: Common Lisp Object System 16/40

Copyright © 2025 Didier Verna, CC BY-NC-ND 4.0 Build 2025-05-21 19:20:50+02:00

https://creativecommons.org/licenses/by-nc-nd/4.0/

Introduction Classes and Objects Inheritance Polymorphism

Information Accessibility II

Accessors
(defclass human ()

((name :initarg :name :reader name :writer rename)
(size :initarg :size :accessor size)
(birth-year :initarg :birth-year :initform 1970 :reader birth-year)))

(name alain) ;; => "Alain Térieur"
(rename "Alain Verse" alain) ;; => "Alain Verse"

(size alain) ;; => 1.80
(setf (size alain) 1.78) ;; => 1.78

(birth-year alain) ;; => 1970
(setf (birth-year alain) 1971) ;; error

I Remark: Automatic generation of (generic) accessor functions

OAP / CLOS: Common Lisp Object System 17/40

Copyright © 2025 Didier Verna, CC BY-NC-ND 4.0 Build 2025-05-21 19:20:50+02:00

https://creativecommons.org/licenses/by-nc-nd/4.0/

Introduction Classes and Objects Inheritance Polymorphism

Outside Class Behavior

Example
(defun hello (human)

(format t "Hello! I'm ~A, ~Am, ~Ayo.~%"
(name human)
(size human)
(age human))

(values))

I Remarks
I Traditional systems: methods
I Here: simple functions (generic ones later on)
I Generic behavior nevertheless (dynamic typing)

OAP / CLOS: Common Lisp Object System 18/40

Copyright © 2025 Didier Verna, CC BY-NC-ND 4.0 Build 2025-05-21 19:20:50+02:00

https://creativecommons.org/licenses/by-nc-nd/4.0/

Introduction Classes and Objects Inheritance Polymorphism

Plan

Introduction

Classes and Objects
Classes and Objects
Information Scope and Accessibility
Type / Class Integration

Inheritance
Reminder
Inheritance Model
Problems Related to Inheritance

Polymorphism
Reminder
Generic Functions and Methods
(Sub-)Class / (Sub-)Type Relationship

OAP / CLOS: Common Lisp Object System 19/40

Copyright © 2025 Didier Verna, CC BY-NC-ND 4.0 Build 2025-05-21 19:20:50+02:00

https://creativecommons.org/licenses/by-nc-nd/4.0/

Introduction Classes and Objects Inheritance Polymorphism

Classes, Objects, Types
I Strong type / class integration

I Single hierarchy: root class t (class-of)
I Class / type correspondance (type-of, typep)
I Native type / class correspondance

Specialization possible, instantiation forbidden
I Note: sub-classing ⇐⇒ sub-typing (subtypep)

I Cf. traditional systems, although more robust
I MOP (total reflexivity: introspection / intercession)

I Classes are objects (1st class type system)
I Meta-class: class of a class
I standard-class: class of all user classes (among others)

Class of aggregative classes, circularity

OAP / CLOS: Common Lisp Object System 20/40

Copyright © 2025 Didier Verna, CC BY-NC-ND 4.0 Build 2025-05-21 19:20:50+02:00

https://creativecommons.org/licenses/by-nc-nd/4.0/

Introduction Classes and Objects Inheritance Polymorphism

Plan

Introduction

Classes and Objects
Classes and Objects
Information Scope and Accessibility
Type / Class Integration

Inheritance
Reminder
Inheritance Model
Problems Related to Inheritance

Polymorphism
Reminder
Generic Functions and Methods
(Sub-)Class / (Sub-)Type Relationship

OAP / CLOS: Common Lisp Object System 21/40

Copyright © 2025 Didier Verna, CC BY-NC-ND 4.0 Build 2025-05-21 19:20:50+02:00

https://creativecommons.org/licenses/by-nc-nd/4.0/

Introduction Classes and Objects Inheritance Polymorphism

Plan

Introduction

Classes and Objects
Classes and Objects
Information Scope and Accessibility
Type / Class Integration

Inheritance
Reminder
Inheritance Model
Problems Related to Inheritance

Polymorphism
Reminder
Generic Functions and Methods
(Sub-)Class / (Sub-)Type Relationship

OAP / CLOS: Common Lisp Object System 22/40

Copyright © 2025 Didier Verna, CC BY-NC-ND 4.0 Build 2025-05-21 19:20:50+02:00

https://creativecommons.org/licenses/by-nc-nd/4.0/

Introduction Classes and Objects Inheritance Polymorphism

Reminder: Relations Between Classes

I Copy-Paste: evil!
I Aggregation: “set / parts” relationship
I Composition: stronger aggregation
I Inheritance: implicit inclusion

Structural and behavioral inheritance

Inheritance
(defclass employee (human)

((company :initarg :company :reader company)
(salary :initarg :salary :accessor salary)
(hiring-year :initarg hiring-year)))

OAP / CLOS: Common Lisp Object System 23/40

Copyright © 2025 Didier Verna, CC BY-NC-ND 4.0 Build 2025-05-21 19:20:50+02:00

https://creativecommons.org/licenses/by-nc-nd/4.0/

Introduction Classes and Objects Inheritance Polymorphism

Plan

Introduction

Classes and Objects
Classes and Objects
Information Scope and Accessibility
Type / Class Integration

Inheritance
Reminder
Inheritance Model
Problems Related to Inheritance

Polymorphism
Reminder
Generic Functions and Methods
(Sub-)Class / (Sub-)Type Relationship

OAP / CLOS: Common Lisp Object System 24/40

Copyright © 2025 Didier Verna, CC BY-NC-ND 4.0 Build 2025-05-21 19:20:50+02:00

https://creativecommons.org/licenses/by-nc-nd/4.0/

Introduction Classes and Objects Inheritance Polymorphism

Specificities
I Implicit inheritance:

I Unique class hierarchy
I user-class −→ ... −→ standard-object −→ t
I No slot, cf. print-object, etc.

I Slot inheritance:
I 6= traditional systems
I A unique slot (no ambiguity)

I Slot options inheritance:
I initargs, initforms, etc.
I Modalities may depend on the option

I Method inheritance:
I Sub-classing ⇐⇒ sub-typing

I Multiple inheritance

OAP / CLOS: Common Lisp Object System 25/40

Copyright © 2025 Didier Verna, CC BY-NC-ND 4.0 Build 2025-05-21 19:20:50+02:00

https://creativecommons.org/licenses/by-nc-nd/4.0/

Introduction Classes and Objects Inheritance Polymorphism

Instantiation in the Presence of Inheritance

Exemple
(defun make-employee (name size company salary hiring-year

&rest keys &key birth-year)
(let ((employee (apply #'make-instance 'employee

:name name :size size
:company company :salary salary
:hiring-year hiring-year
keys)))

(incf (slot-value employee 'population))
employee))

I Remarks
I One single entry point (make-instance)
I No constructor chain

OAP / CLOS: Common Lisp Object System 26/40

Copyright © 2025 Didier Verna, CC BY-NC-ND 4.0 Build 2025-05-21 19:20:50+02:00

https://creativecommons.org/licenses/by-nc-nd/4.0/

Introduction Classes and Objects Inheritance Polymorphism

Plan

Introduction

Classes and Objects
Classes and Objects
Information Scope and Accessibility
Type / Class Integration

Inheritance
Reminder
Inheritance Model
Problems Related to Inheritance

Polymorphism
Reminder
Generic Functions and Methods
(Sub-)Class / (Sub-)Type Relationship

OAP / CLOS: Common Lisp Object System 27/40

Copyright © 2025 Didier Verna, CC BY-NC-ND 4.0 Build 2025-05-21 19:20:50+02:00

https://creativecommons.org/licenses/by-nc-nd/4.0/

Introduction Classes and Objects Inheritance Polymorphism

Problems Related to Inheritance
I Persisting:

I Inheritance vs. Instantiation (“is a”)
Class-based system

I Inheritance ambivalence (interface / implementation)
Sub-classing ⇐⇒ sub-typing

I Alternatives:
I Inheritance by restriction / Differential Programming

Cf. next chapter: dynamic aspects of CLOS
I Multiple / diamond inheritance

I Definition merging / 6= packages
I Cf. next chapter: method combinations

OAP / CLOS: Common Lisp Object System 28/40

Copyright © 2025 Didier Verna, CC BY-NC-ND 4.0 Build 2025-05-21 19:20:50+02:00

Reminder
Human

Employee

alex:Employee

«instanceof»

Reminder
List

+insert (val : obj, pos : int) : void
+remove (pos : int) : obj

Stack
-data : List

+push (val : obj) : void
+pop () : obj

Reminder

Platypus

Mammal
-weight : unsigned

+nurse () : void
+weight () : unsigned

Oviparous
-weight : unsigned

+nurse () : void
+weight () : unsigned

https://creativecommons.org/licenses/by-nc-nd/4.0/

Introduction Classes and Objects Inheritance Polymorphism

Plan

Introduction

Classes and Objects
Classes and Objects
Information Scope and Accessibility
Type / Class Integration

Inheritance
Reminder
Inheritance Model
Problems Related to Inheritance

Polymorphism
Reminder
Generic Functions and Methods
(Sub-)Class / (Sub-)Type Relationship

OAP / CLOS: Common Lisp Object System 29/40

Copyright © 2025 Didier Verna, CC BY-NC-ND 4.0 Build 2025-05-21 19:20:50+02:00

https://creativecommons.org/licenses/by-nc-nd/4.0/

Introduction Classes and Objects Inheritance Polymorphism

Plan

Introduction

Classes and Objects
Classes and Objects
Information Scope and Accessibility
Type / Class Integration

Inheritance
Reminder
Inheritance Model
Problems Related to Inheritance

Polymorphism
Reminder
Generic Functions and Methods
(Sub-)Class / (Sub-)Type Relationship

OAP / CLOS: Common Lisp Object System 30/40

Copyright © 2025 Didier Verna, CC BY-NC-ND 4.0 Build 2025-05-21 19:20:50+02:00

https://creativecommons.org/licenses/by-nc-nd/4.0/

Introduction Classes and Objects Inheritance Polymorphism

Reminder: 3 Kinds of Polymorphism
I Static Polymorphism

1. Overloading
I Types: nonsensical in a dynamic language
I Cardinality: too ambiguous / complicated
I Replaced with a richer call semantics

2. Masking
I Specific to member methods
I Nonsensical with generic functions

I Dynamic polymorphism
3 Rewriting

I Generic functions
I Methodes

OAP / CLOS: Common Lisp Object System 31/40

Copyright © 2025 Didier Verna, CC BY-NC-ND 4.0 Build 2025-05-21 19:20:50+02:00

https://creativecommons.org/licenses/by-nc-nd/4.0/

Introduction Classes and Objects Inheritance Polymorphism

Plan

Introduction

Classes and Objects
Classes and Objects
Information Scope and Accessibility
Type / Class Integration

Inheritance
Reminder
Inheritance Model
Problems Related to Inheritance

Polymorphism
Reminder
Generic Functions and Methods
(Sub-)Class / (Sub-)Type Relationship

OAP / CLOS: Common Lisp Object System 32/40

Copyright © 2025 Didier Verna, CC BY-NC-ND 4.0 Build 2025-05-21 19:20:50+02:00

https://creativecommons.org/licenses/by-nc-nd/4.0/

Introduction Classes and Objects Inheritance Polymorphism

Generic Functions

The translate function
(defgeneric translate (object x &optional y))

I Remarks
I Functional definition (defgeneric is a macro)
I Dynamic life cycle (meta-object)
I Dynamic typing
I Interface only (6= regular function)
I Optional declaration
I Accessors are generic functions
I Behavior identical to regular functions

Same call syntax, function-cell, anonymous generic functions, etc.

OAP / CLOS: Common Lisp Object System 33/40

Copyright © 2025 Didier Verna, CC BY-NC-ND 4.0 Build 2025-05-21 19:20:50+02:00

https://creativecommons.org/licenses/by-nc-nd/4.0/

Introduction Classes and Objects Inheritance Polymorphism

Methods

A translate method
(defmethod translate ((circle circle) x &optional (y 0))

(translate (center circle) x y))

I Remarks
I Functional definition (defmethod is a macro)
I Dynamic life cycle (meta-object)
I Dynamic typing
I Method = one specific implementation
I Specialization on mandatory arguments
I Multi-methods (specialization on several arguments possible)
I Default method = not specialized (class t)
I Methods are anonymous and not executable

OAP / CLOS: Common Lisp Object System 34/40

Copyright © 2025 Didier Verna, CC BY-NC-ND 4.0 Build 2025-05-21 19:20:50+02:00

https://creativecommons.org/licenses/by-nc-nd/4.0/

Introduction Classes and Objects Inheritance Polymorphism

Methods Chaining

call-next-method
(defgeneric hello (object))

(defmethod hello ((human human))
(format t "Hello! I'm ~A, ~Am, ~Ayo.~%"

(name human)
(size human)
(age human))

(values))

(defmethod hello ((employee employee))
(call-next-method)
(format t "Working at ~A for ~A euros, started at the age of ~A.~%"

(company employee)
(salary employee)
(hiring-age employee))

(values))

I Remark: sorted list of applicable methods

OAP / CLOS: Common Lisp Object System 35/40

Copyright © 2025 Didier Verna, CC BY-NC-ND 4.0 Build 2025-05-21 19:20:50+02:00

https://creativecommons.org/licenses/by-nc-nd/4.0/

Introduction Classes and Objects Inheritance Polymorphism

Plan

Introduction

Classes and Objects
Classes and Objects
Information Scope and Accessibility
Type / Class Integration

Inheritance
Reminder
Inheritance Model
Problems Related to Inheritance

Polymorphism
Reminder
Generic Functions and Methods
(Sub-)Class / (Sub-)Type Relationship

OAP / CLOS: Common Lisp Object System 36/40

Copyright © 2025 Didier Verna, CC BY-NC-ND 4.0 Build 2025-05-21 19:20:50+02:00

https://creativecommons.org/licenses/by-nc-nd/4.0/

Introduction Classes and Objects Inheritance Polymorphism

(Sub-)Class / (Sub-)Type Relationship

Reminder

Driver

+license () : License
+drive (vehicle : Car) : void
+vehicle () : Car
+provide (parking : Parking) : void

TruckDriver

+provide (parking : TruckParking) : void
+vehicle () : Vehicle
+drive (vehicle : Vehicle) : void
+license () : TruckLicense

License

TruckLicense

Parking

TruckParking

Vehicle

Car Truck

Covariance

Contravariance

OAP / CLOS: Common Lisp Object System 37/40

Copyright © 2025 Didier Verna, CC BY-NC-ND 4.0 Build 2025-05-21 19:20:50+02:00

https://creativecommons.org/licenses/by-nc-nd/4.0/

Introduction Classes and Objects Inheritance Polymorphism

Covariance / Contravariance

I Everything is expressible (6= AOP1)
Expressible ⇒ compilable
I Contravariance on return values
I Covariance on arguments
I Why: dynamic typing / external methods

I Not everything might make sense (= AOP1)
I Contravariance on return values

I Potential failure
I Example: (drive DRIVER (vehicle TRUCK-DRIVER))

I Covariance on argument
I Potentially ignored error
I Exemple: (offer TRUCK-DRIVER PARKING)

I ⇒ Dynamic checks thanks to new (multi-)methods

OAP / CLOS: Common Lisp Object System 38/40

Copyright © 2025 Didier Verna, CC BY-NC-ND 4.0 Build 2025-05-21 19:20:50+02:00

https://creativecommons.org/licenses/by-nc-nd/4.0/

Bibliography

Plan

Bibliography

OAP / CLOS: Common Lisp Object System 39/40

Copyright © 2025 Didier Verna, CC BY-NC-ND 4.0 Build 2025-05-21 19:20:50+02:00

https://creativecommons.org/licenses/by-nc-nd/4.0/

Bibliography

Bibliography

Linda G. DeMichiel and Richard P. Gabriel
The Common Lisp Object System: An Overview
ECOOP, 1987
Sonja E. Keene
Object-Oriented Programming in Common Lisp: a Programmer’s Guide to CLOS
Addison-Wesley, 1989

Daniel G. Bobrow, Linda G. DeMichiel, Richard P. Gabriel, Sonya E. Keene, Gregor
Kiczales and David A. Moon.
Common Lisp Object System specification
ACM SIGPLAN Notices, 1988.

OAP / CLOS: Common Lisp Object System 40/40

Copyright © 2025 Didier Verna, CC BY-NC-ND 4.0 Build 2025-05-21 19:20:50+02:00

http://www.dreamsongs.com/Files/ECOOP.pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Classes and Objects
	Classes and Objects
	Information Scope and Accessibility
	Type / Class Integration

	Inheritance
	Reminder
	Inheritance Model
	Problems Related to Inheritance

	Polymorphism
	Reminder
	Generic Functions and Methods
	(Sub-)Class / (Sub-)Type Relationship

	Appendix
	Bibliography

