ETAP: Experimental Typesetting Algorithms Platform

Didier Verna
EPITA
Research and Development Laboratory
Le Kremlin-Bicétre, France

didier@Irde.epita.fr

ABSTRACT

We present the early development stages of ETAP, a platform for
experimenting with typesetting algorithms. The purpose of this plat-
form is twofold: while its primary objective is to provide building
blocks for quickly and easily designing and testing new algorithms
(or variations on existing ones), it can also be used as an interactive,
real time demonstrator for many features of digital typography,
such as kerning, hyphenation, or ligaturing.

CCS CONCEPTS

« Software and its engineering — Application specific de-
velopment environments; - Human-centered computing —
Heuristic evaluations; Information visualization; « Applied
computing — Document preparation.

KEYWORDS

Typesetting, Paragraph Formatting, Real-Time Interactive Experi-
mentation

ACM Reference Format:

Didier Verna. 2022. ETAP: Experimental Typesetting Algorithms Platform.
In Proceedings of the 15th European Lisp Symposium (ELS’22). ACM, New
York, NY, USA, 5 pages. https://doi.org/10.5281/zenodo.6334248

1 INTRODUCTION

The world of digital typography is a fascinating one. As an applica-
tion domain, it combines a strong focus on aesthetics with many
complicated technical challenges. On the outside, the concern for
aesthetics is everywhere: from the shape of characters and the space
between them, to the overall balance of lines, paragraphs, pages,
complete documents. On the inside, any kind of formatting algo-
rithm (for example, a paragraph justification one) risks exponential
complexity as soon as some level of quality is expected.

Defining the notion of (good) typesetting quality is a very com-
plicated and subtle problem, and is out of the scope of this paper.
On the other hand, bad typesetting is easily perceived, and hence,
rather easy to demonstrate, as it impacts readability and involves
such notions as aesthetic disturbance.

Figure 1 exhibits the first four lines of a badly justified paragraph.
Notice for example how different the inter-word spacing is between
lines 1 (very large) and 4 (very small). Notice also that line 4 is so

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ELS’22, March 21-22 2022, Porto, Portugal

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-2-9557474-6-9.

https://doi.org/10.5281/zenodo.6334248

Domain-specific language (DSL) design and
implementation is inherently a transverse activity
(Ghosh, 2010; Fowler, 2010). It usually requires
from the product team knowledge and expertise in

Figure 1: Example of a badly justified paragraph

compressed that it becomes very difficult to separate the words
from each other. Finally, within the particular context of the highly
compressed fourth line, where the inter-word spacing becomes
close to the inter-letter one, the word “knowledge” almost appears
written in two words: “know ledge”. Even when the casual reader
is unaware of all these problems, reading badly typeset documents
results in fatigue.

This project originates in two connected, yet slightly different
motivations. The first one is a general interest for the world of
digital typography, and the will to “play” and experiment with
typesetting algorithms (also in order to get a better understanding
of how they work and what they actually do). The second one,
more pragmatic, is the need to strengthen an existing lecture on
typesetting, with striking illustrations for the various aesthetic
challenges that the discipline faces. These two motivations have
something in common: they both require a system which must be
as real-time and interactive as possible. Suppose you are trying
out a new paragraph justification algorithm. Rapid prototyping
and experimentation would be made a lot easier with a direct vi-
sualization of the results on a sample text (actual contents not so
important), and with the ability to interactively tweak such or such
parameter from a Graphical User Interface (GUI), while observing
the effects in real-time. In a similar vein, in order to illustrate the
importance of, say, kerning (inter-letter spacing adjustment), there
is nothing like having the ability to visualize a sample text (again,
actual contents not so important), and turn kerning on or off by
the click of a button.

In general, typesetting experimentation or demonstration is
not a very practical thing to do. What You See Is What You Get
(WYSIWYG) systems such as Word or Libre Office are usually quite
reactive, but their algorithms are not necessarily of the highest qual-
ity, and neither are they easily configurable or extensible, let alone
replaceable. On the other hand, TgX[6, 7], the obvious competitor,
and still a de facto standard in terms of typographic quality and
customizability, is not a a very interactive system. It works more
like a compiled programming language with separate development,
compilation, and visualization phases. There was one attempt at
providing a GUI for controlling typesetting parameters[2], but it

https://doi.org/10.5281/zenodo.6334248
https://doi.org/10.5281/zenodo.6334248

ELS’22, March 21-22 2022, Porto, Portugal

was limited to global ones and didn’t go very far. Many projects
attempt to mitigate this by providing more or less interactive and
real-time WYSIWYG layers on top of it. However, TgX itself cer-
tainly doesn’t make it easy to tweak or replace any of its internal
typesetting algorithmic components. In fact, the “spaghetti code
effect” is a well-known characteristic among the community of TgX
hackers.

Whatever the approach, all these systems have one thing in com-
mon: they are production systems. They target the feature-bloated
generation of complete, actual documents. Interactive and real-time
experimentation, testing, rapid prototyping, or demonstration is
a different goal, and it is the niche that ETAP tries to occupy. It is
not meant to become a complete typesetting system, although it
could very well turn out to be a Petri dish for one [11, 12]. Rather,
it attempts to provide low-level data structures and building blocks
for experimenting with new typesetting algorithms (or variations
on existing ones), with interactive and real-time parametrization
and visualization, and hopefully in a near future, quality assertion
and analysis (for some definition of “quality”).

Section 2 describes the project and its current features. Section 3
gives a brief overview of the underlying implementation. Finally,
Section 4 concludes and Section 5 details some general directions
for future work.

2 CURRENT FEATURES

Figure 2 provides a screenshot of ETAP’s GUIL which is currently
implemented in LispWorks! CAPI?. The platform currently focuses
on paragraph formatting algorithms. The interface can be described
as having four main areas.

2.1 Area 1: Text Editor

Area 1 is a simple text editor (a CAPI editor-pane) which lets you
adjust the textual contents of the typeset paragraph. Any change
in the text is automatically and continuously propagated to the
paragraph view (area 4).

2.2 Area 2: Global Options and Features

Area 2 provides control over some global options, features, and
visual clues, also tracked continuously and in real-time.

The paragraph disposition pane lets one choose between justifica-
tion and various ragged formatting. Note that some combinations
of algorithm / disposition don’t actually make much sense, but
still, these parameters are considered sufficiently orthogonal to be
separate in the GUL

The features pane lets one toggle kerning (inter-letter spacing),
ligatures (character fusion, e.g. ff for ff), and hyphenation (word
splitting) on or off. Kerning and ligature information is provided by
the font in use. The hyphenation implementation is that of TgX itself
based on Liang’s thesis[9]. The language (hence the hyphenation
patterns set) is currently hard-coded to English.

The clues pane allows one to choose what is actually displayed
in the paragraph view (area 4): the characters themselves, but also
different kinds of bounding boxes, plus the hyphenation points,
and the underfull / overfull boxes. In Figure 2, the paragraph view

Thttp://www lispworks.com/
http://www.lispworks.com/products/capi.html

Didier Verna

exhibits individual characters, hyphenation points, and underfull
boxes.
Finally, there is a slider to set the desired paragraph width.

2.3 Area 3: Algorithms

This is where you select a specific paragraph formatting algorithm.
Depending on the chosen one, this area also displays algorithm-
dependent variants, options, or other adjustable parameters. Again,
any choice of algorithm or any modification of its parametrization
is automatically and continuously reflected in the final paragraph
view.

A complete description of the currently available algorithms
is out of the scope of this paper, but each one is implemented in
its own file, and there is always an explanatory comment at the
top. Here, we only provide a quick overview of the five algorithms
currently implemented.

2.3.1 Fixed. The “fixed” algorithm uses only the natural, constant,
inter-word spacing (a value provided by the font in use). Hence, it
can practically never justify properly. Lines are created sequentially,
without look-ahead or backtracking: there are no paragraph-wide
considerations.

2.3.2 Fit. As the name suggests, this is an implementation of the
so-called First, Best, and Last Fit classical algorithms. Those ones
make full use of elastic inter-word spacing (“glue” in TiX terms)
when attempting to justify lines. The acceptable range of inter-
word spacing is also an information provided by the font in use. By
nature of the *-Fit algorithms, lines are also created sequentially
here, without look-ahead or backtracking: there are no paragraph-
wide considerations.

2.3.3 Barnett. This one is an implementation of a justification
algorithm from Michael Barnett[1], originally published in 1965.
In short, this algorithm behaves more or less as a combination of
different *-Fit policies, while favoring overfull lines when no perfect
solution is found.

2.3.4 Duncan. This one is an implementation of a justification
algorithm from C. J. Duncan [5], originally published in 1963. In
short, this algorithm searches for an acceptable breaking solution
while minimizing hyphenation.

2.3.5 Knuth-Plass. Finally, the fifth and last one is the TgX one,
a.k.a. the famous “Knuth-Plass” algorithm[8]. This is the one visible
in Figure 2, and you can see that it has TgX’s full set of adjustable
parameters available.

2.4 Area 4: Paragraph View

Area 4 is where the typeset paragraph is eventually rendered, de-
pending on the selected algorithm and options, and along with
the various visual clues selected in area 2. In the screenshot from
Figure 2, the orange triangles indicate the hyphenation points, and
the rectangles at the end of lines 2 and 9 denote the underfull lines
(that is, the lines that are too short to be justified). Overfull lines
would be indicated, as in TgX, by the same rectangles, only filled in
with orange.

http://www.lispworks.com/
http://www.lispworks.com/products/capi.html

ETAP: Experimental Typesetting Algorithms Platform

ELS’22, March 21-22 2022, Porto, Portugal

[] [Experimental Typesetting Algorithms Platform
Disposition Characters and Clues Algorithms
Flush Left [Characters Fixed Fit Barnett Duncan |GG
+ i i - -
Centered [Hyphenation Points Variant Line Penalty: 10 Double Hyphen Demerits: 10000 Emergency Stretch: 0
Flush Right Paragraph Box .
) : ra —_—
© Justified Line Boxes Ob . .
namic hen Penalty: 50 Final Hyphen Demerits: 5000 Looseness: 0
Character Boxes Y 37 t YP
Disposition Options Baselines /
Sloppy [Over/Underfull Boxes Explicit Hyphen Penalty: 50 Pre Tolerance: 100
Features Adjacent Demerits: 10000 Tolerance: 200
[Kerning ¥ 3
Ligatures
Hyphenation Source text
In olden times when wishing still helped one, there lived a king whose
daughters were all beautiful; and the youngest was so beoutiful that the sun
itself, which has seen so much, was astonished whenever it shone in her face.
Close by the king's castle lay a great dark forest, and under an old lime-tree
in the forest was a well, and when the day was very warm, the king's child
went out into the forest and sat down by the side of the cool fountain; and
when she was bored she took a golden ball, and threw it up on high and caught
it; and this ball was her favorite plaything.
Paragraph width: 280pt (9.84cm) 2
Paragraph zoom: 291% |

Typeset paragraph

In olden times when wishing still helped one, there lived a king
whose daughters were all beautiful; and the youngest was so
beautiful that the sun itself, which has seen so much, was aston-
ished whenever it shone in her face. Close by the king’s castle lay
a great dark forest, and under an old lime-tree in the forest was a
well, and when the day was very warm, the king’s child went out
into the forest and sat down by the side of the cool fountain; and
when she was bored she took a golden ball, and threw it up on
high and caught it; and this ball was her favorite plaything.

4

Figure 2: ETAP’s graphical user interface

There is a slider for zooming in / out the view. Note that the
zooming facility is the only GUI component that doesn’t retrigger
the typesetting engine. It operates at the window level.

The paragraph is currently rendered with a hard-wired font:
Latin Modern Roman 10pt, Extended Cork encoding. The font and
encoding descriptions have been copied from a MacTgX (TgXlive)
distribution®. In particular, the font information (notably including
kerning and ligatures) is read from its original TgX Font Metrics

Shttps://www.tug.org/mactex/

(TFM) file thanks to a library also developed by the author of this
paper?.

3 IMPLEMENTATION

In this section, we provide a brief overview of ETAP’s implemen-
tation. The design of the internals is heavily inspired from that of
TgX, but it also fits a different set of objectives, most importantly
being a experimentation platform rather than a production system.

“https://github.com/didierverna/tfm

https://www.tug.org/mactex/
https://github.com/didierverna/tfm

ELS’22, March 21-22 2022, Porto, Portugal

3.1 Basic Data Structures

ETAP provides five basic data structures. Characters are directly
represented by their corresponding character-metrics structure
from the TFM library. Then, there are classes for kerns (fixed, pos-
sibly negative, space between characters), and break points (discre-
tionaries and glues). Discretionaries and glues follow TgX’s jargon
and design.

A discretionary represents a potential break point with different
material to typeset, depending on whether the break actually occurs
or not. For example, the sequence of characters ff1i is reified as a
discretionary specifying that without a break, the ligature ffi may
be used, and in case of breaking the line, the first line ends with
f- and the next one begins with fi (or the ligature fi). A simple
hyphenation point simply states that in case of breaking a line, the
first one ends with a dash, and nothing else happens otherwise.

A glue represents an elastic space between words, with a natural
width, plus specific amounts of shrinkability and stretchability
(again, those values are provided by the font in use).

3.2 The Lineup

The paragraph text retrieved from Area 1 of the GUI is processed
into a so-called lineup. A lineup is essentially a vector of objects to
typeset. The paragraph text is trimmed from consecutive blanks.
It is then sliced into words, possibly hyphenated (in which case
discretionaries are added). After that, ligatures are handled if re-
quested (which may lead to the creation of new discretionaries,
or the modification of existing ones). Kerns are then inserted at
the appropriate places, again, if requested. Finally, an infinitely
stretchable glue is appended at the end of the lineup.

3.3 The Lines

Each algorithm’s entry point is implemented as a method on a
generic function called create-1lines. The algorithms receive a
lineup, a paragraph width, a disposition, and set of algorithm-
specific options specified in the GUI They compute their own view
on where exactly the lineup should be broken into lines, and they
return the lines in question.

A line is essentially a sequence of characters, each one with a
specific horizontal placement with respect to the beginning of the
line. This placement is computed out of the characters widths, the
kerns, and the glue present in the lineup, and of course, the desired
line’s length. Characters placed at a specific horizontal position are
called pinned characters.

3.4 The Paragraph

Finally, the resulting paragraph is created and passed to the GUI for
rendering. There is in fact not much left to do to generate it. Each line
computed by the selected algorithm is positioned both horizontally
and vertically, relative to the paragraph’s top-left corner. Such a
fully placed line is called a pinned line. The horizontal position of
each line depends on the selected paragraph disposition (centered,
flushed, or justified). Vertically, the lines are simply spaced by a
currently hard-wired constant (the “line skip” in TgX’s jargon).

Didier Verna

4 CONCLUSION

ETAP is currently in an “early prototype” development state’. The
internals are not stabilized, there is no decent documentation, the
code has not been carefully crafted, and no concern for optimization
or general performance has entered the picture yet.

Despite all this, the project already works surprisingly well. The
GUI runs very smoothly in real-time, and it has been used success-
fully several times already to support lectures or conferences on
typesetting. The observable reactions in the audience, facing the
real-time effects of kerning, hyphenation, or ligaturing, for example,
is a testimony to the pertinence of this approach for increasing the
general awareness of the technical challenges involved in digital
typography.

One of the most important advantages in using Common Lisp
[10] for this project is the ease of development and the concision
of the resulting code. The program (excluding the TFM library
and a large font description file) is currently just under 3000 lines
of code. The GUI code and the typesetting building blocks take
around 25% of that each, and the other half of the code is devoted to
the algorithms implementations. The Knuth-Plass algorithm itself,
for which we actually provide two different implementations (see
Section 5.2), takes less than 500 lines (granted, the whole of TgX
isn’t there obviously; user-level macros, mathematics, etc.).

5 FUTURE WORK

In addition to improving the general state of the project (essentially
meaning stabilizing the internals and providing accurate and up to
date documentation), we currently envision two major directions
for future work.

5.1 Direction 1: Experimentation

One of the very first, and already achieved goal of this project
was to make it easy to experiment with typesetting algorithms, by
either creating new ones, extending or modifying existing ones, and
quickly visualizing the results. In a near future, we intend to use
ETAP to do research on known typesetting problems such as rivers
detection, or experiment with new features or extensions, notably
to the Knuth-Plass algorithm. Some people, for instance, prefer
different kinds of placement for end-of-line hyphens in justified
paragraphs.

5.2 Direction 2: Analysis

Because typography is not a technical question only, but also an
aesthetic one, a very difficult problem, when experimenting with
typesetting algorithms, is how to evaluate the quality of the results.
Of course, the ability to directly visualize a typeset paragraph, as
in this project, is a tremendous help, but it is surely not enough.

In fact, we can come up with mathematical formulas represent-
ing some measure of typesetting quality (for example, taking into
account the amount of stretching or shrinking of lines, compared
to their natural width), and this is in fact precisely what the Knuth-
Plass algorithm attempts to optimize, paragraph-wide (the so-called
badness).

Shttps://github.com/didierverna/etap

https://github.com/didierverna/etap

ETAP: Experimental Typesetting Algorithms Platform

With a platform such as ETAP, it becomes very easy to instru-
ment the underlying data structures to keep track of quality mea-
surement (badness, demerits from TgX, or anything else one may
think of), and perform statistical analysis afterward.

Here lies the second most important advantage in using Common
Lisp for this project. Its interactive nature makes it effortless to
bypass the GUI altogether, and run the typesetting algorithms,
without visualization, from the Read-Eval-Print Loop (REPL) or
through a batch script.

In a near future, it is hence also our intention to collect large
empirical data on the quality of typesetting (for example, using
TgX’s notion of quality) and perform statistical and comparative
analysis between different algorithms, or algorithm implementa-
tions. For example, we can easily run the five algorithms currently
implemented on the same paragraph, for many different widths,
and compare the resulting data. The original Knuth-Plass algorithm
uses a dynamic programming|3, 4] optimization technique for cut-
ting through the (potentially very large) graph of break possibilities.
ETAP already provides an unoptimized (and slow) variant imple-
mentation of it, working on the full graph. It would be interesting
to collect statistical data from both these implementations, in order
to get a concrete idea of the impact of TgX’s optimization on the
actual quality of the typesetting.

REFERENCES

[1] Michael P. Barnett. Computer Typesetting: Experiments and Prospects. MIT Press,
January 2000.
[2] Kaveh Bazargan. Batch commander: a graphical user interface for TgX. TUGBoat,
26(1):74-80, 2005.
[3] Richard Bellman. The theory of dynamic programming. Bulletin of the American
Mathematical Society, 60(6):503-516, 1954. doi: 10.1090/S0002-9904-1954-09848-8.
[4] Richard Bellman. Dynamic Programming. Princeton University Press, 2003.
[5] CJ.Duncan, J. Eve, L. Molyneux, E.S. Page, and M.G. Robson. Computer typeset-
ting: an evaluation of the problems. Printing Technology, 7:133-151, 1963.
[6] Donald E. Knuth. The TgXbook. Addison-Wesley, 1984.
] Donald E. Knuth. TgX: the Program, volume B of Computers and Typesetting.
Addison-Wesley, January 1986.
[8] Donald E. Knuth and Michael F. Plass. Breaking paragraphs into lines. Software:
Practice and Experience, 11(11):1119-1184, 1981. doi: 10.1002/spe.4380111102.
[9] Franklin Mark Liang. Word Hy-Phen-a-Tion by Com-Put-Er. PhD thesis, Stanford,
CA, USA, 1983.
[10] Ansi. American National Standard: Programming Language — Common Lisp.
ANSI X3.226:1994 (R1999), 1994.
[11] Didier Verna. Star TgX: the next generation. In Barbara Beeton and Karl Berry,
editors, TUGboat, volume 33. TgX Users Group, 2012.
Didier Verna. TiCL: the prototype (Star TgX: the next generation, season 2). In
Barbara Beeton and Karl Berry, editors, TUGboat, volume 34. TgX Users Group,
2013.

[12

ELS’22, March 21-22 2022, Porto, Portugal

http://www.tug.org/TUGboat/
http://www.tug.org/
http://www.tug.org/TUGboat/
http://www.tug.org/

	Abstract
	1 Introduction
	2 Current Features
	2.1 Area 1: Text Editor
	2.2 Area 2: Global Options and Features
	2.3 Area 3: Algorithms
	2.4 Area 4: Paragraph View

	3 Implementation
	3.1 Basic Data Structures
	3.2 The Lineup
	3.3 The Lines
	3.4 The Paragraph

	4 Conclusion
	5 Future Work
	5.1 Direction 1: Experimentation
	5.2 Direction 2: Analysis

	References

