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Abstract
Paragraph justification is based primarily on shrinking or stretching

the interword blanks. While the blanks on a line are all scaled by the

sameamout, the amount inquestionvaries from line to line. Thequal-

ity of a paragraph’s typographic color largely depends on the afore-

mentioned variation being as small as possible. Yet, TEX’s paragraph

justification algorithm addresses this problem in a rather coarse fash-

ion. In this paper, we propose a refinement to the algorithm allowing

to improve the situation without disturbing the general behavior of

the algorithm too much, and without the need for manual interven-

tion. We analyze the impact of our refinement on a large number of

experiments through several statistical estimators. We also exhibit a

numberof typographical traits related towhitespacedistributionthat

we believe may contribute to our perception of homogeneousness.
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1 Introduction
Consider the paragraph in Figure 1(a), which is typeset with a Latin

Modern Roman font at a 10pt size, and for a paragraph width of

201pt. This particular layout is the breaking solution chosen by

TEX [7, 8], Donald Knuth’s famous typesetting system. In spite of the

notoriously high quality of its paragraph justification algorithm, the

so-called Knuth-Plass (KP) [9], this paragraph suffers from a number

of deficiencies. In [18], we addressed the “similarity problem” (lines

beginning or endingwith the same sequence of characters or words),

while noticing that the paragraph in question was also defective in

terms of whitespace distribution.
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Whitespace distribution deals with the amount of scaling (stretch-

ing or shrinking) of the interword blanks across thewhole paragraph.

Whichever algorithm is in use, and absent micro-typographic ad-

justments [15], scaling interword blanks always is the primary way

to adjust the width of a line for justification. Among other things,

the overall quality of the typographic color depends on the homoge-

neousness of the spacing across the whole paragraph. A close look

at Figure 1(a) reveals that TEX’s breaking solution is sub-optimal in

that regard: the beginning of the paragraph is typeset in a rather

loose fashion, whereas the end of the paragraph is rather tight. This

makes the paragraph look somewhat shaky, and in general, toomuch

spacing discrepancy between consecutive lines may even disrupt

the reading experience.

While it is not surprising to encounter similarities in paragraphs

typeset by the KP (the original algorithm has no notion of it, so it

cannot address it), witnessing homogeneousness problems is more

surprising for two reasons. First of all, the KP is not a greedy algo-

rithm as some other algorithms proposed in earlier days [1, 3, 13].

Greedy algorithms operate only locally, line after line, so they cannot

naturally modulate their decisions with cross-paragraph considera-

tions. The KP, on the other hand, was one of the very first algorithms

to defer the final decision until the whole paragraph was processed.

The second reason is that the KP is in fact already aware of such

homogeneousness problems, and is even equipped to fight against

it. More specifically, consecutive lines with too much spacing vari-

ation are heavily penalized, leading to favor more homogeneous

solutions. It thus appears that, at least in the case of Figure 1(a), the

countermeasures in place fail to operate efficiently.

In this paper we analyze the reason for this failure and we pro-

pose a refinement allowing the algorithm to perform better without

departing too much from its original behavior. This paper is orga-

nized as follows. Section 2 mentions some related work. Section 3

explains how the KP handles the distribution of blanks and analyzes

its limitations. Section 4 presents a refinement to the original algo-

rithm, both from a theoretical and practical point of view. Section 5

analyzes the direct impact of this refinement on the outlined defi-

ciencies of the original algorithm. Sections 6 and 7 push the analysis

further, notably studying the indirect impact of our refinement on

typographical traits that we think may contribute to our perception

of homogeneousness, or that contribute to the quality of the typo-

graphic color in general. Section 8 gives a word about performance

considerations. Finally, sections 9 and 10 conclude and provide some

perspectives for future work.

2 RelatedWork
Homogeneousness considerations are evoked by FrankMittelbach

in a survey of existing alternative TEX engines and remaining is-

sues [11]. The analysis is that the (discrete) number of “types of

line quality” (see Section 3) is too coarse to perform efficiently. Our
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In olden times when wishing still helped one,
there lived a king whose daughters were all
beautiful; and the youngest was so beautiful
that the sun itself, which has seen so much,
was astonished whenever it shone in her face.
Close by the king’s castle lay a great dark for-
est, and under an old lime-tree in the forest
was a well, and when the day was very warm,
the king’s child went out into the forest and
sat down by the side of the cool fountain; and
when she was bored she took a golden ball, and
threw it up on high and caught it; and this ball
was her favorite plaything.

(a) original version

In olden times when wishing still helped one,
there lived a king whose daughters were all
beautiful; and the youngest was so beautiful
that the sun itself, which has seen so much, was
astonished whenever it shone in her face. Close
by the king’s castle lay a great dark forest, and
under an old lime-tree in the forest was a well,
and when the day was very warm, the king’s
child went out into the forest and sat down
by the side of the cool fountain; and when she
was bored she took a golden ball, and threw it
up on high and caught it; and this ball was her
favorite plaything.

(b) linear version

In olden times when wishing still helped one,
there lived a king whose daughters were all
beautiful; and the youngest was so beautiful
that the sun itself, which has seen so much, was
astonished whenever it shone in her face. Close
by the king’s castle lay a great dark forest, and
under an old lime-tree in the forest was a well,
and when the day was very warm, the king’s
child went out into the forest and sat down by
the side of the cool fountain; and when she was
bored she took a golden ball, and threw it up
on high and caught it; and this ball was her
favorite plaything.

(c) quadratic version

Figure 1: Homogeneousness
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Figure 2: Fitness Classes

analysis goes further along the same lines, and we also propose a

working solution in this paper.

Alex Holkner proposes to minimize the variance of the interword

spacing as one specific objective in a multiple-objective approach

to line breaking [4]. One surprising aspect of his work is that the

author seems to favor tight spacing (see his definition of 𝜇Looseness),
whereas the KP algorithm favors natural spacing (“natural” being

defined by the font designer). Our approach to the problem is dif-

ferent in that we are trying to refine the KP algorithm rather than

completely depart from it. Also, rather than trying to minimize a

variance of some sort as an explicit a priori objective, we do use a sim-

ilar measure, only a posteriori, as a means to assess the effectiveness

of our solution.

In a private conversation, Hans Hagen (the author of LuaTEX
1
)

mentions having tried to increase the aforementioned number of

“types of line quality”,without gettingvery convincing results.While

we also propose something similar, we do believe that the important

question is not so much about the number of such types of line qual-

ity, as about what exactly to do with them. Our proposition differs

fromwhat was attempted in LuaTEX, and our results are statistically

convincing.

3 Fitness Classes and Adjacent Demerits
In order to penalize too much discrepancy in the distribution of

blanks across a whole paragraph, the KP implements a simple mech-

anismthat boils down tocomparing twoconsecutive lines (“adjacent”

in the KP terminology) with each other.

The interword space is normally defined by three values: its nor-

mal width, and the amounts of acceptable shrinking and stretching.

Based on this, each line has a natural width, and total amounts of

acceptable shrinking and stretching respectively. In the remainder

of this paper, the proportion of acceptable shrinking (negative) or

1
https://www.luatex.org/

stretching (positive) that is used for justification is called the Line

Spacing Adjustment Ratio (LSAR). A LSAR of 0 means that the line

is at its natural width.

Depending on this ratio, the KP defines four so-called fitness
classes, as depicted in Figure 2. Decent lines use at most half the

acceptable amount of shrinking or stretching, tight lines are shrunk

by more than half of the maximum allowed shrinking, loose lines

extend between half and 100% of the allowed stretching, and very

loose lines are stretched beyond 100%. Note that the KP never uses

more than the maximum recommended shrinking, as it would be-

come difficult to distinguish one word from the next below that

threshold. That explains the asymmetry in the distribution of fitness

classes.

When the algorithm compares two consecutive lines, it penalizes

a bad choice by adding demeritswhen the respective fitness classes
of the lines are more than one class apart. The demerits in question

are adjustable through the \adjacentdemerits parameter (\ad for
short in the remainder of this paper), the value of which is 10000 by

default. Thus, adjacent demerits are applied in the three different

situations below:

(1) tight←→ loose,

(2) tight←→ very loose,

(3) decent←→ very loose.

In this context, the problem with the paragraph in Figure 1(a)

becomes apparent when we look at the LSAR of each successive

line. This is depicted in Figure 3(a), where it is indeed visible that

the paragraph is rather loose at the beginning, and rather tight to-

wards the end. Each of the 13 lines appears on the horizontal axis,

with its LSAR (expressed as a percentage) on the vertical axis. The

exact values are not important. What matters here is to notice that

adjacent demerits are applied only once on this whole paragraph,

namely between lines 1 and 2. This is because line 1 is decentwhereas

line 2 is very loose, although only by a very small amount (in fact,

just 4% above the 100% threshold). Every other pair of consecutive

lines are considered adjacent (including for example lines 10 and

11 which happen to be further apart from each other than lines 1

and 2), so no more adjacent demerits are applied. The conclusion

is then obvious: fitness classes work in such a way that most of the

adjacency problems in this paragraph are simply ignored.

https://www.luatex.org/
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Figure 3: Line Spacing Adjustment Ratios

4 Fitness Classes Refinement
Rather than suggesting a completely different approach, what we

propose in this paper is to refine the way fitness classes are defined

andused,mostly for the potential applicability to production engines

using the original version of the algorithm.

The reportedly unconvincing trial attempted in LuaTEX was to

increase the number of fitness classes, while still applying adjacent

demerits for consecutive lines more than one class apart from each

other. It is possible that this approach did not produce better results

because it disturbed the algorithm’s behavior too much, for example

by applying adjacent demerits too quickly or too often. Indeed, one

needs to remember that the KP is a complex machinery involving

many adjustable parameters affecting aesthetic choices that are, in

fact, intertwined. As a result, modulating one particular aspect of

the typesetting will inevitably affect the others, in a possibly bad

way.

The other important point to consider is that the various formulas

used in the KP, along with the default values for its parametrization,

are the result of a very careful study conducted by Donald Knuth in

the 80’s, on large corpuses of text, which eventually were reported

to “workwell in practice” [9]. This is another incentive to not disturb

the workings of the algorithm too much.

4.1 Gradual Demerits
Based on these considerations, the following proposition can be

formulated. In its current state, for two consecutive lines in the tight

– decent – loose range, the KP will brutally apply adjacent demerits

if the LSARs are at least 100% apart (typically, two lines at the two

extremes of the decent class). Under that threshold, adjacent demer-

its remain inoperative. We thus propose to refine this “no man’s

land” by gradually applying demerits in a way proportional to the

LSAR variation, until the actual value of \ad is reached for a 100%
discrepancy, and at which point the value will remain clamped, as in

the original version. Note that if one of the lines is tight, the actual

adjacent demerits trigger is at 150%, not 100%. In our refined version,

we prefer to keep the 100% threshold across the whole tight – loose

range for reasons of symmetry around the ideal LSAR value of 0

(very loose lines are really undesirable). In a similar vein, if one of

the two lines being compared is very loose, adjacent demerits are

applied as soon as the LSARs are 50% apart, so we also apply gradual

demerits before that, only twice as fast.

4.2 Rationale
The idea of gradual demerits is in fact quite natural for two rea-

sons. First of all, it will make the algorithm explore alternative lay-

outs while paying attention to adjacency considerations where they

would otherwise have been ignored. Next, the corresponding ty-

pographical trait (the difference in the scaling of two consecutive

lines) is in fact a continuous one, although the \ad trigger is Boolean.
This is actually a singularity in the KP. The other existing demerits

in TEX do correspond to Boolean typographical traits (for example,

\finalhyphendemerits corresponds to whether the penultimate

line ishyphenated).Theonlyothercontinuous trait thatTEXobserves

is the LSAR itself, and the corresponding cost is given by the line’s

so-called badness, which is also a continuous function. Thus, gradual
demerits are simply a way to acknowledge the continuous nature

of the corresponding typographical trait, and to take it into account.

Perhaps the rationale behind clampingdeservesmore explanation

though. Apart from the aforementioned badness of a line, which is

computed via a hard-wired formula, all kinds of penalties or demerits

in TEX are accessible to the user via adjustable parameters. \ad is one
of those. If we did not clamp the computed gradual demerits to TEX’s

original value, we would take the risk of essentially disregarding

every other typographical defect known to TEX in the case of con-

secutive lines with very different scaling. For example, TEX is able to

avoid hyphenation ladders by applying \doublehyphendemerits
when two consecutive lines are hyphenated. By default, the values

for this parameter and \ad are the same, which means that what

works well for TEX is to consider LSAR discrepancies of 100 / 50%

and beyond as bad as consecutively hyphenated lines. We do not

want to rupture that equilibrium, and in fact, avoiding hyphenation

ladders is probably preferable to avoiding a very loose line following

a tight one.

4.3 Formal Definition
In their simplest form, gradual demerits can be defined as a linear

function of the LSAR variation. However, we also wanted to see how

this refinementwould behavewhenbeingmore lenient on small vari-

ations, and less toleranton largerones.Thus,wealso triedaquadratic

formula. Gradual demerits may hence be formally defined as follows.

Let 𝑙𝑖 and 𝑙 𝑗=𝑖+1 be two consecutive lines. Let 𝑟𝑖 =LSAR(𝑙𝑖 ) and
𝑟 𝑗 = LSAR(𝑙 𝑗 ) (𝑟𝑖 , 𝑟 𝑗 ∈ [−1,+∞[). The demerits 𝑑𝑖 𝑗 applied when

comparing 𝑙𝑖 and 𝑙 𝑗 are then calculated like this.
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(1) If 𝑟𝑖 ,𝑟 𝑗 ≤1,
𝑑𝑖 𝑗 =min

(
\ad,\ad· |𝑟𝑖−𝑟 𝑗 |

)
in the linear case, or

𝑑𝑖 𝑗 =min

(
\ad,\ad· |𝑟𝑖−𝑟 𝑗 |2

)
in the quadratic case.

(2) If 𝑟𝑖 or 𝑟 𝑗 >1,

𝑑𝑖 𝑗 =min

(
\ad,2\ad· |𝑟𝑖−𝑟 𝑗 |

)
in the linear case, or

𝑑𝑖 𝑗 =min

(
\ad,4\ad· |𝑟𝑖−𝑟 𝑗 |2

)
in the quadratic case.

4.4 Practical Definition
The above formulas are unfortunately incompatible with the dy-

namic programming optimization technique [2] used in the KP, and

this is actually the reason why the corresponding continuous ty-

pographical trait was discretized through a fixed number of fitness

classes in the first place. Working with continuous functions is only

possible if one keeps the full graph of possibilities in memory, which

is unrealistic in practice, due to the exponential complexity of the

problem.

The necessity for a discrete number of fitness classes may be

explained informally as follows. The KP avoids maintaining an ex-

haustive list of paragraph breaking solutions by keeping track of a

limited set of potentially optimal ones only. Suppose that the algo-

rithmhas reached line 𝑙 , atwhichpoint itwould favor a breakmaking

the line tight. Although such an arrangement may look optimal at

that point, the algorithm has not processed the next line yet, so it

doesn’t know its possible kind(s) of fitness. If later on, it turns out

that the only possibility for the next line is to make it very loose,

such a layout would be heavily penalized, and perhaps it would in

fact have been a better choice in the end to make line 𝑙 loose instead

of tight. In other words, a locally optimal choice may turn out to be a

bad one after all, so a definitive decision must not be made too early.

In order to avoid making such premature decisions, the KP does

not only remember which break points it has found, but how it has

found them as well. More specifically, for every possible break point

𝑏 found, the algorithmmay remember up to four different ways to

reach it; one (and only one) for each fitness class
2
. That way, it is

able to choose only at the very end which path minimizes the total

amount of adjacent demerits.

If, on the other hand,wewere to remember the exact LSARof each

possible line ending at 𝑏 instead of its fitness class, every such ratio

would be different for each possible line, whichmeans thatwewould

end up keeping the exhaustive list of solutions in memory until the

end. Again, this is unrealistic in practice, due to the exponential

complexity of the problem.

4.5 More Fitness Classes
In order to remain compatible with the original dynamic program-

ming optimization, we thus need to sample our continuous gradual

demerits into a discrete number of intervals.We choose to create 10%

2
The case of non rectangular paragraphs introduces even more complication, but it

is out of the scope of this paper.

-10 -5 0 5 10

tight decent loose very loose

Figure 4: New Fitness Classes

wide centered slices and define one integral fitness class for every

such slice. Figure 4 depicts thiswith a recollection of the original four

ones. A line shrunk by 100% belongs to class -10, a line half shrunk to

class -5, a line stretched to 100% to class 10, etc.Centering the classes
allows to keep the symmetry between shrinking and stretching. For

example, class 0, our new and very narrow “decent” class extends be-

tween LSARs of -5% and +5%. Thus, in this new implementation, the

number of fitness classes covering the range tight – loose amounts

to 21, as opposed to the 3 original ones. Note that for very loose lines,

the number of fitness classes is theoretically infinite, but this is not a

problem for two reasons. First of all, we do not need to predefine an
infinite number of fitness classes, as the class identifiers are integrals

computed from the LSAR itself (see below). Second, recall again

that in the event of a preposterous stretching, the computed gradual

demerits are clamped to the finite value of \ad anyway.
In this context, our refinement can be reformulated as follows.

For line 𝑙𝑖 with a LSAR of 𝑟𝑖 , the fitness class of 𝑙𝑖 is defined by

𝑐𝑖 = 𝑓 𝑙𝑜𝑜𝑟 (10𝑟𝑖+1/2). Now, the demerits 𝑑𝑖 𝑗 applied when compar-

ing 𝑙𝑖 and 𝑙 𝑗 are calculated as follows.

(1) If 𝑐𝑖 ,𝑐 𝑗 ≤10,

𝑑𝑖 𝑗 =min

(
\ad,
\ad· |𝑐𝑖−𝑐 𝑗 |

10

)
in the linear case, or

𝑑𝑖 𝑗 =min

(
\ad,
\ad· |𝑐𝑖−𝑐 𝑗 |2

100

)
in the quadratic case.

(2) If 𝑐𝑖 or 𝑐 𝑗 >10,

𝑑𝑖 𝑗 =min

(
\ad,
\ad· |𝑐𝑖−𝑐 𝑗 |

5

)
in the linear case, or

𝑑𝑖 𝑗 =min

(
\ad,
\ad· |𝑐𝑖−𝑐 𝑗 |2

25

)
in the quadratic case.

5 Experimentation
The paragraphs in Figures 1(b) and 1(c) are the ones obtained when

we apply linear and quadratic demerits respectively. Notice how they

indeed look more homogeneous, and as a side-effect, are also rid of

similarities.Asamatterof fact, thesolution inFigure1(c) is theonewe

obtained in [18]whenwe addressed the similarity problem explicitly.

These new versions share the first three lines with the original one

(in fact, there happens to be no other choice there), have the next

five lines in common, and subsequently differ on the next four.

This paragraph is but one example of alternative renditions how-

ever, and we now need to explore howwell our refinement performs

at large. In order to answer that question, we set up a number of

number of experiments based on corpuses of text we had prepared
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Frog King Moby Dick

All algorithms agree 43% 64%

Linear > quadratic 35% 46%

Quadratic > linear 65% 54%

Linear ∈ KP’s top 10% 78% 63%

Quadratic ∈ KP’s top 10% 81% 62%

Table 1: KP Disruption

for [18]: the first paragraph of the Grimm Brothers’ “Frog King”

novel appearing in Figure 1, typeset at 379 different widths, and

1279 paragraphs from the “Moby Dick” novel, typeset at the single

width of 284pt (approximately 10cm). This amounts to a total of 1658

individual experiments.

5.1 KPDisruption
Given that one of our initial concerns was to not disturb the original

algorithm too much, we are interested in knowing how far the alter-

native layouts selected by our refinement are from the original KP

algorithm’s choice. In order to answer that question, we recorded,

for each of the 1658 individual experiments, all the possible solu-
tions found by an unoptimized implementation of the original KP

algorithm, and sorted them by decreasing estimated quality (i.e.,
decreasing total demerits in TEX’s jargon). We then looked up the

rank of our linear and quadratic layouts in that sorted and exhaustive

list of solutions. A rank of 0 indicates that an alternative choice is

the same as the original one. Table 1 summarizes the results.

Depending on the exact scenario (Frog King or Moby Dick), the

three algorithms offer the same solution in 43 and 64% of the cases

respectively. Put the other way around, this means that our refined

algorithm is able to choose an alternative solution in 36 to 57% of

the cases, which is far from negligible, especially since those alter-

native solutions are found automatically, without even touching

the parametrization of the original KP (the value of \ad remains

the same; the default one). Note that the actual number of possible

layouts for an individual experiment is extremely chaotic. Some

paragraphs have only one or very few possibilities, some other may

have up to 90000 alternatives. If we filter out the cases where there

is only one choice, the numbers do not vary significantly so they are

not reported here.

The second interesting result is that whatever the experiment,

the quadratic solutions look predominantly better in the eyes of the

original KP: they are graded with fewer demerits than the linear

ones in 54 to 65% of the cases respectively (> in Table 1 means better,

so the ranking is in fact smaller).

Finally, and this is perhaps the most important outcome, in the

cases where an alternative layout is chosen, it remains within the

KP’s top 10% choices in 62 to 63% of the cases for the Moby Dick

experiment, and in 78% to 81% of the cases for the Frog King one. If

we include the cases where the algorithms agreewith each other, the

percentages increase to 88 – 90%. In fact, across the full set of exper-

iments, the average rank of the alternative solutions is around 3.5

– 4%. In other words, the alternative layouts chosen by our refined al-

gorithmwould practically always be considered as fairly acceptable

by the original version. Note however that the “top 10%” estimator
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Figure 5: Frog King Alternative Layouts Rankings

is rather arbitrary. As mentioned before, the room for choice is ex-

tremely volatile and of course, when the linear or quadratic layout

chosen happens to be the second one out of three or four, it doesn’t

fall in the top 10%.

Figure 5 provides a more detailed view of the rankings (as per-

centages of the total number of possible solutions) of the linear and

quadratic layouts in the eyes of the KP for the Frog King experiment.

Again, a rankingof 0means that the algorithmsagreewith eachother,

and a ranking of 100% would be the KP’s last choice. Apart from the

aforementioned chaotic nature of the problem, this figure makes it

visible that all alternative layouts remainwithin the first half choices

of the KP (the worst choice is at 50%). A similar figure for the Moby

Dick experiment
3
also exhibits a 50% threshold, although with some

very rare exceptions for which the ranking would fall down to 70%.

Nevertheless, these statistics tend to confirm that we have in-

deed succeeded in proposing a refinement that does not disturb the

original behavior too much.

5.2 Adjacency
Apart from our concern for disruption, the primary goal of this

project was to have the KP pay more attention to adjacency consid-

erations, that is, to the variation of the LSARs of two consecutive

lines. We thus need to assert the efficiency of our gradual demerits

in reducing that variation.

In order to do that, we adapted our experiments to record the

LSARs of every selected choice in the quadratic, linear, and original

algorithm versions. But we also need a statistical indication of how

well our refinement performs. Considering that in the ideal case,

all lines would have the same LSAR (in other words, a difference

of 0), we can estimate how distant we are from this optimum by

computing the Root Mean Square (RMS) of the differences between

consecutive LSARs. In other words, we define the Adjacency Root

3
Given the number of paragraphs in the Moby Dick experiment, such figures would

be too dense to be readable in a PDF, so they are not included in this paper. They are

however available as auxiliary material in SVG format.
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Figure 6: Frog King Adjacency RootMean Square

Frog King Moby Dick

KP average ARMS 0.45 0.56

Linear average ARMS 0.40 0.53

Quadratic average ARMS 0.39 0.53

Linear ARMS < KP ARMS 89% 81%

Quadratic ARMS < KP ARMS 92% 86%

Table 2: Adjacency RootMean Square

Mean Square (ARMS) of a paragraph as follows.

𝐴𝑟𝑚𝑠 =

√︄∑𝑛−1
𝑖=1 (𝑟𝑖−𝑟𝑖+1)2

𝑛−1
Figure 6 provides a plot of theARMS for the FrogKing experiment.

The first remark is that whatever the algorithm version, the ARMS

has a tendency to decrease as the paragraph grows wider. This is not

surprising, considering thatnarrowparagraphsarenotoriouslymore

difficult to typeset (fewerchoices), andwideoneshavemoreelasticity

available in each line. The equivalent figure for theMobyDick exper-

iment does not exhibit this behavior, as the paragraph width is fixed.

A more interesting remark is that our refinement performs vis-

ibly better than the original KP, sometimes by a large amount, such

as around 380pt, or in the 460–500pt range. From the picture itself

however, we cannot clearly infer which of the linear or quadratic

approach performs better in general. Table 2 providesmore concrete

results. Compared to the original algorithm, our refinement features

a systematically lower average ARMS.When the algorithms provide

different layouts, the linear version improves the situation in 81 to

89% of the case, against 86 to 92% for the quadratic version.

From these numbers, we can draw two conclusions. First of all,

we see that the quadratic version offers slightly better results than

the linear one. The most striking result however is that for nine

paragraphs out of ten when there is a choice, we are able to reduce

the scaling discrepancies between two consecutive lines. Thismeans

not only that there is indeed a lot or room for alternative choices

where the original KP simply ignores adjacency problems, but also

that our gradual demerits are very efficient at finding them.

Frog King Moby Dick

KP average slope 0.05 0.07

Linear average slope 0.06 0.07

Quadratic average slope 0.06 0.07

Linear slope < KP slope 32% 44%

Quadratic slope < KP slope 33% 44%

Table 3: Global Trend Slopes

6 Further Analysis
At that point, we could satisfy ourselves with those results and stop

there. There is however more to homogeneousness than meets the

eye, and this becomes strikingly apparent when we look at Fig-

ures 3(b) and 3(c). These are the LSARs for the linear and quadratic

alternative layouts of our sample paragraph respectively.

When compared with the original plot (Figure 3(a)), the reader

may now be legitimately surprised by the perceived increase in

homogeneousness. Indeed, the LSARs distributions in the two alter-

native layouts are clearly wider than in the original case. As amatter

of fact, the paragraph that serves as an illustration in this paper

happens to be a counterexample of the point we are trying to make.

In this particular case, the ARMS of the original layout (0.59) turns

out to be better than that of the linear one (0.68), itself better than

that of the quadratic one (0.69). Thus, it appears that the ARMS is

not a sufficient estimator to account for improvement.We formulate

two hypotheses that may explain this phenomenon.

First of all, and contrary to the original case, neither the linear nor

the quadratic version exhibit a strong tendency towards compaction

(or expansion, for thatmatter) aswe progress through the paragraph.

Rather, the LSARs seem to oscillate around natural spacing without

any noticeable trend. We believe that the absence of such a trend is

less disruptive of the paragraph’s typographic color as a whole.

The second hypothesis is that even though the LSARs still oscil-

late a bit, the oscillation frequency is lower than in the original case.

Consider lines 6 to 10 for example. In Figure 3, we observe a total of

four “peaks” (∧ or ∨, i.e., a sudden change in the scaling direction),
that is, one at every line but the tenth. In the linear version, there is

only one (at line 9), and two (at lines 8 and 10) in the quadratic case.

In totality, there are eight peaks in the first paragraph, against four

in the linear version, and five in the quadratic one. Also, in spite of

the additional quadratic peak, that version happens to be slightly

closer to natural spacing in general. It is thus possible that oscillation

frequencies impact our perception of homogeneousness.

6.1 Global Trends
One way to detect a global tendency towards expansion or com-

paction within a single paragraph is to perform a linear regression

on the LSARs, and observe the slope of the resulting affine transfor-

mation. The dotted lines in Figure 3 represent such linear regressions

obtained with the least squares method, and confirm that in the par-

ticular case of this paragraph, the tendency to compaction is much

more pronounced in the original version than in the linear and qua-

dratic alternatives respectively.

6.1.1 Slopes. Figure 7 presents the linear regression slopes (in ab-
solute value) for the Frog King experiment. One interesting remark
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Figure 7: Frog King Global Trend Slopes

is that whatever the algorithm, the likelihood of getting steep slopes

increases with the paragraph width. Considering that wider para-

graphs are easier to typeset, this trait is somewhat surprising and

we do not have an explanation for this yet. Apart from that, there

is not much that can be clearly deduced from this figure, and further

analysis reported in Table 3 reveals that our refinement does not

bring any noticeable improvement on thematter. The average slopes

are practically the same in all experiments (between 0.05 and 0.07,

which is in fact relatively flat). Also, when the alternative layouts

are different from the original one, the linear or quadratic versions

feature slopes flatter than the original in only 32% to 44% of the cases.

It thus appears again that the paragraph in Figure 1 is not statistically
representative of the general behavior.

There is one final remark to be made on Table 3. In general, the

Moby Dick experiment is harsher on the typesetting than the Frog

King one, regardless of the algorithm. It also has a tendency to reduce

the differences between the original algorithm and our refinement.

As an exception to the rule, we can see that it is in fact the opposite

when it comes to slopes.

6.1.2 Linear RegressionQuality. Linear regressions do not account
for every aspect involved in the perception of global trends though.

First of all, it could be argued that the number of samples (i.e. para-
graph lines in our case) available when computing them is too small

for linear regressions to be really meaningful all the more for wider

paragraphs where the number of lines can fall drastically. Next, the

quality of the linear regression itself can vary greatly depending on

the experiment. Observe for instance that even though the slopes

in Figures 3(b) and 3(c) are flatter than in Figure 3(a), the spread of

the samples is actually wider, meaning that the linear regression is

less representative of the reality.
The quality of the linear regression can be estimated by com-

puting the Determination Coefficient (𝑅2
), a scalar value in [0,1]

(the closer to 1 the better), and confirms the previous remark. In the

original case, the𝑅2
is of 0.47, against 0.06 and 0.02 in the alternative

versions. Figure 8 depicts the 𝑅2
for the Frog King experiment. From

the general shape of it, it seems thatwhatever the algorithm, the like-

lihood of getting linear trends increases with the paragraph width.
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Figure 8: Frog King Global Trend 𝑅2

Frog King Moby Dick

KP average 𝑅2
0.19 0.17

Linear average 𝑅2
0.27 0.18

Quadratic average 𝑅2
0.26 0.19

Linear 𝑅2
> KP 𝑅2

68% 59%

Quadratic 𝑅2
> KP 𝑅2

69% 60%

Table 4: Global Trend 𝑅2

Also, whether the original algorithm or our refinement perform

better seems to be highly dependent on the paragraph width. For

example, the original KP performs clearly better around a width of

200pt, whereas our refinement takes over at 325pt and 575pt. Table 4

presents some further analysis of the resulting numbers, and this

time, our refinement does exhibit interesting improvements. The

average 𝑅2
is noticeably better than the original one in the Frog

King experiment, although only slightly in theMobyDick one.More

importantly, when the alternative layouts differ from the original

one, we also get better 𝑅2
in 68 to 69% of the cases in the Frog King

experiment, and 59 to 60% in the Moby Dick one.

To sum things up, it appears that even though our refinement

does not help avoiding global trends, it does produce layouts closer

to their LSAR linear regressions.

6.2 Peaks
The second hypothesis we formulated is that LSAR oscillation may

affect the typographic color. The question here is thus how often do

the scalings of consecutive lines change direction, in other words,

howmanypeaks (∧ or∨) dowe observe in plots like those in Figure 3.
Figure 9 shows the number of such peaks for the Frog King experi-

ment. In order to account for the variation in the resulting paragraph

height, the number of peaks is expressed as a percentage of the max-

imum possible number, that is, the paragraph’s line number minus

two. The figure gives a feeling that our refinement might perform

better in this regard (theMobyDick onewould give the same impres-

sion), something which is confirmed by further analysis reported

in table 5. The average number of peaks is noticeably lower with
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Figure 9: Frog King Oscillation Peaks

Frog King Moby Dick

KP average peaks 65% 66%

Linear average peaks 56% 62%

Quadratic average peaks 56% 62%

Linear peaks < KP peaks 75% 72%

Quadratic peaks < KP peaks 78% 72%

Table 5: Oscillation Peaks

our refinement in the Frog King experiment, less but still better in

the Moby Dick one. More importantly, when the alternative layouts

differ from the original one, we get fewer peaks in 75 to 78% of the

cases for the Frog King experiment, against 72 in theMoby Dick one.

Note that the global improvements in oscillation frequency that

our refinement features is all the more beneficial that it is coinci-

dental. Indeed, intentional peak avoidance would require compar-

ing lines three by three, and perhaps penalize them with a new

\peakdemerits parameter. Instead, our refinement only compares

lines two by two, as in the original KP, and does not require any new

parameter to improve the situation 72 to 78% of the time.

At that point, the reader may legitimately object that the number

of peaks accounts for the oscillation frequency only, regardless of its
amplitude, and it is very likely that frequent oscillation with a small

amplitude would not be so much of a problem. There are different

ways to account for amplitude. One of them happens to be the linear

regression’s𝑅2
thatwas discussed in Section 6.1, and the results there

were in favor of our refinement. Another possible way to account

for amplitude consists in looking at the LSARs standard deviation,

in other words, taking the average LSAR as a reference point instead

of the linear regression itself. We thus define the LSAR Standard

Deviation (LSD) as follows (𝜇 being the average LSAR).

𝜎 =

√︄∑𝑛
𝑖=1 (𝑟𝑖−𝜇)2

𝑛

Figure 10 provides the LSD for the Frog King experiment. As in

the case of the ARMS, there is a global tendency towards smaller

amplitudes as the paragraph grows wider. Contrary to the ARMS,
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Figure 10: Frog King LSAR Standard Deviation

Frog King Moby Dick

KP average LSD 0.31 0.39

Linear average LSD 0.31 0.38

Quadratic average LSD 0.31 0.38

Linear LSD < KP LSD 42% 49%

Quadratic LSD < KP LSD 44% 52%

Table 6: LSAR Standard Deviation

there doesn’t seem to be a clear winner in general. Table 6 allows us

to refine that analysis. The average LSDs are very close to each other,

or even identical in the Frog King case. In theMobyDick experiment,

only the quadratic version outperforms the KP, and even so barely.

In the Frog King experiment, the situation is slightly more in favor

of the original algorithm.

7 Naturalness
Asmentioned before, paying more attention to one typographical

trait in particular (in our case, adjacency considerations) always

comes at the detriment of others [4, 12]. The KP algorithm pro-

vides no fewer than ten parameters allowing the user to adjust the

relative weight of several such traits. For example, one can give

more or less importance to hyphenation by changing the value of

\hyphenpenalty. One of these traits however is hardwired in TEX:
how far a line is from the natural interword spacing (specified by

the font designer) is evaluated by the so-called badness, which is

computed by an internal formula.

Since the user has no direct control over the badness
4
, we are

interested in knowing how our refinement affects the LSARs with

respect, not to each other this time, but to 0. In other words, wewant

to evaluate the comparative “naturalness” of original, linear, and

quadratic layouts. More specifically, we do not expect the badness

to globally improve, since we are now paying more attention to

4
It is in fact possible to request more or less compact paragraphs by adjusting the

\looseness parameter, but it is only a very limited and somewhat hackish way to do

so. It is also possible to override a font’s natural spacing specifications, but this is not

technically done through some KP parametrization.
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Figure 11: Frog King Naturalness RootMean Square

Frog King Moby Dick

KP average NRMS 0.34 0.43

Linear average NRMS 0.36 0.44

Quadratic average NRMS 0.36 0.44

Linear NRMS < KP NRMS 13% 32%

Quadratic NRMS < KP NRMS 15% 32%

Table 7: Naturalness RootMean Square

another typographical trait. Rather, we want to know how costly

our refinement is in terms of naturalness.

We can estimate how distant we are from natural spacing by

computing the root mean square of the LSARs of each line. In other

words, we define the Naturalness Root Mean Square (NRMS) of a

paragraph as follows.

𝑁𝑟𝑚𝑠 =

√︄∑𝑛
𝑖=1𝑟

2

𝑖

𝑛

Figure 11 exhibits the NRMS for the Frog King experiment. We

can see that whatever the algorithm, the naturalness has a general

tendency to improve as the paragraph grows wider. Again, this is

expected as there is notoriously more latitude in typesetting wide

paragraphs. Also, the three variants seem to remain quite close to

each other, with the original KP looking occasionally better.

Table 7 provides more specific numbers. First of all, the average

NRMSs are indeed quite close to each other: our refinement induces

a degradation of only 0.01 to 0.02. Next, and as expected, the NRMS

remains largely better in the original layout, typically around 85%

of the time for the Frog King experiment, and 70% of the time in the

Moby Dick one. Also, with respect to the comparative harshness of

the experiments, we are faced with a second exception here (the first

one being about slopes in Table 3). Contrary to the usual behavior,

the Moby Dick experiments allows our refinement to perform better

than the Frog King one on the NRMS.

Of course, the cost of our refinement on the NRMS should not

be considered in isolation (as shouldn’t any of the other statistical

estimators used in this paper). In the case of our sample paragraph

for example, the NRMS of the original layout is of 0.58 whereas the

linear one is at 0.60 and the quadratic one at 0.59. The degradations

are admittedly rather small, but nevertheless, the refined layouts are

also admittedly better, in spite of the degradation.

8 Performance
Our refinement has been implemented in Etap

5
, an open source plat-

form for typesetting experimentation and demonstration [16, 17].

Rather than being optimized for performance, Etap is heavily instru-

mented for experimentation, so it is impossible to accuratelymeasure

the impact of our refinement. However, should this refinement be

incorporated into production engines, we believe that impact to be

minimal for two reasons.

First of all, according to the author of LuaTEX, paragraph jus-

tification is not a performance bottleneck anymore, I/O and font

processing having taken over. It is thus very unlikely that the ad-

ditional arithmetic involved in computing gradual demerits would

have a noticeable impact.

Next,𝑛 being the number of potential break points in a paragraph,

remember that the dynamic programming optimization that TEX

uses reduces the original (theoretical) complexity of the problem

from𝑂 (2𝑛) to a worst-case𝑂 (𝑛2), but in fact often closer to linear
time, independent of the paragraph’s width [9]. The heart of the

algorithm consists in traversing the so-called active nodes list, repre-
senting the break points currently being tested. The length of this list

is of the same order of magnitude as the average number of words

per line, so it is quite small. Given the increased number of fitness

classes our refinement requires, our new active nodes list can be

expected to be around ten times longer than the original one, in the

worst case scenario, and for an algorithm that was designed to work

in the seventies. This should definitely not be a problem by today’s

hardware standards.

9 Conclusion
In this paper, we have proposed a refinement to the KP algorithm

allowing it to select alternative layouts when scaling discrepancies

between consecutive lines would otherwise have been disregarded.

This refinement is internal only: it neither modifies, nor extends

the user-level interface. Since the only thing our refinement does

is to modify the way adjacent demerits are computed, it can easily

be incorporated into any TEX-based or inspired system (alternative

*TeX engines, Boxes and Glue6, Typeset7, InDesign [6], etc.), with a
performance cost that is expected to be unimpactful.

Section 5 has demonstrated that gradual adjacent demerits are

indeed successful in fulfilling both of our original objectives. In the

vast majority of the 1658 experiments that were conducted, we are

able to select alternative layouts that reduce the scaling discrepan-

cies between consecutive lines, and at the same time that would still

be considered as fairly acceptable choices in the eyes of the original

algorithm.

However, further analysis of the LSARs in our sample paragraph

has demonstrated that our perception of homogeneousness cannot

be reduced to adjacency considerations only. We have formulated

5
https://github.com/didierverna/etap

6
https://boxesandglue.dev/

7
https://github.com/bramstein/typeset/

https://github.com/didierverna/etap
https://boxesandglue.dev/
https://github.com/bramstein/typeset/
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Trait Impact
Disruption ✓

ARMS (adjacency) ✓

Slope (global trends) ✗

𝑅2
(linearity) ✓

Peaks (oscillation) ✓

LSD (spread) —

NRMS (naturalness) ✗

Table 8: Gradual Demerits Impact Summary

a number of hypotheses about other typographical traits that may

contribute to it, and we have studied the impact of our refinement

on those traits. Our findings are briefly summarized in Table 8, and

make us believe that gradual demerits are indeed a useful addition

to the KP. In particular, it is notable that the positive impact of our

refinement on linearity and oscillation is collateral. The only aspect

that gradual demerits influence directly is the ARMS.

Also, our analysis allows us to conclude that the quadratic version

of our refinement performs consistently better than the linear one,

although the various statistical estimators only exhibit relatively

small differences between the two variants.

Finally, and with a couple of exceptions, the Moby Dick experi-

ment is harsher on the three algorithmic variants than the Frog King

one. That experiment should probably be considered more repre-

sentative of the general case, as the corpus of text is much bigger.

Nevertheless, one interesting aspect of the Frog King experiment

is to show the influence of the paragraph width on the behavior of

the algorithm, and experience shows that our refinement does not

introduce any fundamental divergence from the original version.

10 Perspectives
Apart from potential inclusion in production engines, the perspec-

tives of this work are numerous.

First of all, we do not yet know whether there exist any corre-

lations between the typographical traits we have analyzed. If such

correlations are to be found, they may turn out to be important. For

example, consider that the perception of a strong global trend is

likely to be attenuated by a large spread of the LSARs (low 𝑅2
or

high LSD), whereas a soft but highly linear slope will probably be

more visible. As a matter of fact, it is notable that TEX’s original

definition for adjacent demerits is not completely orthogonal to the

other parameters in the KP, and it is an exception. Indeed, the way

adjacent demerits are applied does not depend only on the LSAR

difference between consecutive lines, but on the LSARs themselves.

In Section 7, we have studied the impact of our refinement on the

deviation from natural spacing. We have seen that as expected, the

original algorithm pays more attention to it, although the average

NRMS remains practically the same with our refinement in place.

One thing we have yet to do is study the impact of our refinement

on other aspects already handled by the KP. In particular, does our

refinement induce more hyphenation, or worse, more hyphenation

ladders? Does it consistently lead to longer or shorter paragraphs?

What is the impact on similarities if we also use the extension pro-

posed in [18]? These are important questions that, once answered,

may lead us to adapt the default values of several parameters in the

KP in order to restore the balance.

Finally, thehypotheseswehave formulatedas towhatparticipates

in our perception of homogeneousness are admittedly conjectural.

They are based on the analysis of one particular example, intuition,

and a pinch of introspection. We would very much like to confront

these ideas with rigorous experimentation in cognitive science and

psychology of perception. There is literature about how typography

affects the process of reading [5, 10, 14], but most of it seems to be

focused on the perception of letterforms, word recognition, and the

design of typefaces (in particular, consistency and uniformity). We

are not aware of any recent research about what makes the quality

of the typographic color from a cognitive and perceptual point of

view. Perhaps there is a whole new field of research to develop

there.
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